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CAM-CL (current advance method and cyclic teapfrog) is a new
algorithm for hybrid plasma simulations. In common with existing
methods, its physical basis is a “hybrid" plasma model which treats the
ians as particles and the electrons as a massless fluid. CAM-CL is dis-
tinguished from previous 20 hybrid algorithms by four main features:
(1) Multiple jon species may be treated with only a single computa-
tional pass through the particle data: this is achieved without extrapola-
tivn of the electric field i time. The particles are advanced by a leaptrog
pracedure which requires the electric ficld to be a half time-step ahead
of the particle velocities. The electric field depends on the ionic current
density and hence the particle velocities, In order to avoid a time-con-
suming “pre-push’ of the velocities, CAM advances the ionic current
density a half -step with an appropriate equation of motien. This is
similar in concept to the moment method (D. Winske and K. B, Quest,
J. Geophys. Res. 93 (A3), 9681 (1988), Appendix A), except for the
next two features: {(2) CAM advances the ionic current density,
whereas the moment method advances the fluid velocity. Conse-
quently, multiple ion species may be easily treated. {3) A free-
strearmming ionic current density is collected (velocities are collected at
positions a haif time-step ahead). An equation of motion is then
applied, in which the advective term and the ionic stress tensor in the
moment method are not needed, since transport effects are included in
the free-streaming current. (4) CL is a feapfrog scheme for advancing
the magnelic field, an adaptation of the modified midpoint method
described by W. H. Press et al. (Numerical Recipes {Cambridge Univ.
Press, Cambridge, 1986)). It is stable and allows sub-stepping of the
magnetic field (the magnetic field time-step may be different to the
particle time-siep). A two-dimensional version of the algorithm has
been tested on a quiet plasma, MHD wave propagation, and ion beam
instabilities, the results of which are discussed. © 1994 Academic
Press. Inc.

I. INTRODUCTION

Hybrid numerical codes are used o simulate plasma
behaviour in which ton kinetic cffects are important,
whercas thuse of clectrons may be neglected, This paper
describes an algorithm (CAM-CL) which integrates the dif-
ferential equations in a manner that is explicit in time and
spatially local. CAM-CL refers to two features of the means
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by which the system is advanced in time: current advance
method for the ions, and cyelic leapfrog for the magnetic
fieid. A 2D implementation of the algorithm, a code called
H2CAM, has much in common with three methods
reviewed by Quest [8]: a predictor-corrector scheme
described by Harned [4], a code used by Terasawa et al.
[9], and especially a moment method described by Winske
and Quest [147, It is distinguished from these methods by
four main leatures: (1) multiple species may be treated with
only a single computational pass through the particle data;
this is achieved without extrapolation of the electric field in
time; (2) CAM advances the jonic current density, whereas
the moment method advances the fluid velocity; (3) a “free-
streaming” ionic current density is collected which is then
advanced by an appropriate equation of motion, whereas in
the moment method advective and ionic stress tensor terms
are treated; (4) CL is an adaptation of the modified
midpoint method [7] to magnetic field evolution.

1.1, Hybrid Codes

A hybrid model treats the various components of a
plasma in a dilferent manner; here the ions are modelled as
particles and the electrons as a fluid (see Winske [12] for a
review). The system is governed by the Vlasov-fluid equa-
tions, comprising the equations of motion for individual
ions, and the electron fluid equations. The hybrid model
used here neglects electron inertial effects; the electrons act
as 2 massless Muid of constant and uniform temperature
which serves Lo neutralise the plasma as well as to provide
a pressure which acts on the ions. An important {eature of
any hybrid code is that the ion population is discretised into
macroparticles, so there is always a noise level in the com-
puted plasma density due to statistical fluctuations in the
number of macroparticles per grid cell, even in a theoreti-
caily uniform plasma. The Vlasov-fluid equations and nota-
tion used in this paper are described in detail in Section 2.

In several respects, hybrid simulations lie between purely
fluid, or magnetohydrodynamic simulations, and those run
by particle codes, in which electrons as wefl as ions are
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modelled as particles. First, the physical scales vary. An
MHD model may be formulated for scales considerably
greater than the ionic scales intrinsic to a hybrid model,
although the spatial resolution places limits on the
Reynold’s number, the thickness of discontinuities, and the
time-step. An explicit particle code must resolve electron
behaviour at scales far smaller than for ions, so given the
same computing resources a particle code models smaller
regions for shorter times than a hybrid code. Second,
modelling the particles requires much more computer
memory (and consequently more time) than modelling a
fluid. For each point in space where fluid variables are
specified in an MHD code, a large number of macropar-
ticles (usually between 10 and 100) is required to give even
a coarse representation of their velocity distribution in a
hybrid code. Thus for the same simulation grid, an MHD
code uses much less computing power than a hybrid code,
which in turn uses considerably less than a particle code.

Two-dimensional hybrid codes have been used to
simulate jon beam instabilities [13, 6], shocks with ion
reflection [10, 147, and various other instabilities ([4, 9]
and [5] with a 3D code). The code described here is
intended for simulating the solar wind, especially its bow
shock with the earth and associated coliisionless plasma
physics.

1.2. The Algorithm CAM-CL

The plasma has two time-dependent components: ion
macroparticles with positions and velocities and the
magnetic field specified at the nodes of a regular, rectan-
gular computing grid. Several species of ions with differing
masses and charges may be modeiled. The displacement
current is neglected in Maxwell’s equations, so there is no
equation for the time-evolution of the electric field. Instead,
it is determined by the requirement that the electric force
balances the other forces acting on the massless electron
fluid; the electric field is a function of the ion moments
(interpolated at grid points from particle data), the
magnetic field, and the electron temperature (constant and
uniform). Bilinear interpolation is used for moment collec-
tion and evaluation of the Lorentz force at particle posi-
tions. An explicit form of the time-dependent differential
equations is used. Implicit methods are generaily more time-
consuming than explicit methods, and they are global rather
than local. Explicit methods are local and faster and are
employed in all the 2D hybrid codes referred to in
Section 1.1. Spatial derivatives are approximated by centred
finite-differences.

CAM-CL is essentially a time-centred Ieapfrog algorithm
for both particles and fields. This means that the time-
derivative of a variable is evaluated at the midpoint of its
time-step. Now if the time-derivative in question is itsell a
function of the variabie to be advanced, then there must be
some estimate of the variable a half time-step ahead. Two
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approaches to this problem are outlined by Press er al. [7]:
the midpoint method and the modified midpoint method.
The first approach is to make an initial half-step using the
time-derivative at the beginning of the step. The second is to
keep two solutions staggered a half time-step apart and to
use each solution to evaluate the centred time-derivative of
the other. The two solutions “leapfrog” aver each other,
and since they usually diverge, they may be periodically
averaged. The difference between the solutions may serve as
a check on their accuracy. The modified midpoint method
as described by Press et al, [7] repeats this procedure
with diminishing time-steps until the successive averaged
solutions converge.

Cyclic leapfrog is the integration procedure of the
modified midpoint method applied to the magnetic field.
The label “cyclic leapfrog” has been chosen because it
readily conveys the essence of the technique in the language
of plasma simulation.

The particle positions are advanced by leapfrogging them
with the velocities, which in turn are advanced by the mid-
point method, using values of the electric and magnetic field
interpolated at the particle positions a half time-step ahead.
An initial half-step of the particle velocity is used to com-
pute the time-centred acceleration. The whole procedure
can be accomplished with a single computational pass
through the particle data arrays—provided that the electric
field is also known a half time-step ahead. Yet it depends on
the ionic current density and hence the particle velocities, so
at first sight a “pre-push” of velocities is needed to evaluate
the time-centred electric field.

The current advance method resolves this problem by
advancing the ionic current densities a half-step instead,
with an appropriate equation of motion. This almost halves
the total computing time compared with employing a pre-
push of the particle velocities. By collecting appropriate
moments of the particle distribution and applying an
equation of motion, the ionic current density is solved to
first order in the time-step.

An important feature of the algorithm is that the time-
step for particle and field advance is different. In general, the
magnetic field requires a smaller time-step, especially to
resolve high-frequency behaviour (see Terasawa er al. [9])
such as dispersion.

1.3. Comparison with Other Codes

CAM-CL may be compared with other explicit multi-
dimensional hybrid codes to place it in context theoreti-
caily, but a comparison of performances would require
testing which is beyond the scope of this introduction. The
codes chosen for comparison are: Harned’s [4] predictor—
corrector scheme, that of Terasawa ef al. [9], the moment
method described by Winske and Quest [ 14, Appendix A],
and the 31> code QN3D presented by Horowitz et al. [5].
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Harned's [4] predictor—corrector algorithm linearly
extrapolates the electric field from two previous values to
the midpoint of the particle velocity time-step. The particles
are pushed once to obtain a final value of the ficlds, which
in turn are used to push the particles a second time. Its main
differences with CAM-CL are that pushing the particles
twice requires more computer time, and the time-step for
particles and fields is the same.

Horowitz er al.’s [ 5] three-dimensional code QN3D also
has the same time-step for fields and particles. Functional
iteration advances the fields: the average between the initial
and the ({iterated} final value is used to evaluate the
time-centred derivative for the next iteration. The implicit
equation for particle velocity advance is solved exactly; if
terms above second order are dropped, the expression is
equivalent to the midpoint method, so for a sufficiently
smail time-step these methods give very similar results. The
essential difference with CAM-CL, without taking into
consideration several optimisations in QN3D, is functional
iteration versus sub-stepping of the fields.

Terasawa et al. [9] sub-step the fields for each particle
step, as in cyclic leapfrog. A second-order rational
Runge-Kutta aigerithm [11] advances both ficlds and
particles. CAM-CL adopts sub-stepping of the fields and
adds the current advance method.

Winske and Quest [ 14, Appendix A] present a moment
method, which Quest [8] describes as a variation of
Terasawa er al’s method. The fields are aiso sub-cycled, but
with a fourth-order rational Runge—Kutta algorithm. The
variation is the moment method: the plasma fluid velocity is
advanced using an MHD equation which includes an
advective term and an ionic stress tensor which must be
collected.

The current advance method has several advantages
compared with the moment method:

(1) mutltiple ion species may be modelled. The moment
method is best suited to modelling a single species because
it advances the fluid velocity (and hence would need to do
this for each species to model multiple species), whereas
in CAM the ionic current is easily advanced provided
“free-streaming” moments are collected

(2) the numerically awkward advective term is absent.
The coilection of moments at the time-centred positions a
half-step ahead includes the transport of particle momenta

{3) no ionic pressure tensor is collected {for the same
reason as in (2)).

CAM-CL is in many respects an extension of the methods
reviewed here. Harned [4] provides the structure of the
computing grid, the electric ficld expression, and time- and
space-centred finite differences. Terasawa et al. [9] intro-
duce sub-stepping of the fields, and Winske and Quest [ 14]
suggest advancing the moments directly to calculate the
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time-centred electric field instead of either a particle pre-
push or functional iteration of the fields. CAM-CL takes a
logical step from existing methods: cyclic leapfrog is a dif-
ferent way of sub-stepping, and the current advance method
is the moment method applied to a particular moment, the
ionic current density.

2. THE HYBRID MODEL

In terms of the hybrid model, the plasma is governed by
the Vlasov-fluid equations

dx,jdt =v, (1)
do,fdt = L2 (E+v,x B) (2)
0B/ot= -VXE (3)
VxB=p,J 4)
du.
nFnzpF;—: —n,eE+J,xB—-Vp, )]
p.=n.kT,, {6)

where the quantities and their symbols are ion position x,,
ion velocity v, ion mass m,, ion charge g, clectric field £,
magnetic field B, magnetic permeability p,, current density
J, electron number density »n,, electron mass #,, electron
fluid velocity u,, magnitude of the electronic charge e, clec-
tronic current density J, = —n, eu,, electron fluid pressure
P., Boltzmann’s constant x, and electron temperature 7.
Equation (4) neglects the displacement current (the Darwin
approximation), and {5) is the equation of motion for the
electron fluid.

The subscript s may refer to individual particles which are
members of an ion species of particie mass m, and charge g,
or to collective quantities evaluated for species s much as n;
and J, defined with other quantities as

mo= | flx, vy d, (7)
(n), = | v, £i(x,, 0.} %, (8)
u, = (), fn, (9)
Q.= 1.4, (10)
DI (11)
L= (12)
J=YJ, (13)
J=JS',-+J{,, (14)
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where f.(x,, v,) is the species distribution function, and we
denote species particle number density n,, species “velocity
density” (nu),, species fluid velocity u,, charge density ¢,
mass density g,,, species current density J,, and ionic
current density J,.

The assumption that the electrons act as a massless,
charge-neutralising fluid implies that m,=0 and n,e=¢,,
s0 (5), together with (4) and (14), may be rearranged to give
an expression for the electric field

J,-><B+(V><B)><B V&
g, Hol, .

E=— (15)

so that E=E(g,, J;, B, T,) is a state function. Substituting
(15) into (3) gives

JB J;xB
X —

(VxB)x B
—= X .
Ot 0.

Hol

A%

(16)

The first term describes induction, the second, dispersion.
The electron pressure in (6) does not influence magnetic
field evoiution.

Magnetic and ionic species (partial and combined)
pressures
ps = Qi‘x(vrzh).\'/zs

Pe= B2y, Pi=Y P

where v, is the ton thermal speed, are used to define the
ratios

8 A&_(Ufh)sé’é
N
Bi=3 B,

8 _&_ZnexT[,
" ps oty

where v, is the Alfvén speed given by v’ = B*/u,0,,. The
sound speed is given by

2= Pred Lo gy
0 2

m

3. CURRENT ADVANCE METHOD

3.1. Optimising the Leapfrog Scheme

The leapfrog scheme for particle advance is the midpoint
method applied to Eq. (2), and a time-centred integration of
Eq. (1). A time-step 4! is introduced, and quantities are
evaluated at different time levels denoted by superscripts
such that, relative to a time ¢,

x*=x(t,)=x(ty + k At).
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The differential equations are rewritten as difference
equations

xP=x"17 4 An® (17)
v =o0 4 dr L (Br(0n) Lo B, (18)

A primary objective in simulations is to minimise the
number of operations required to push the particles, while
simultaneously attaining acceptable accuracy in solving the
equation of motion. A fundamental means of maximising
speed is to find an algorithm that requires only one
computational pass through the particle data arrays.

The problem with solving Eq. (18) is that it is implicit,
Neither ¢'/2 nor E'”* {which depends on ail the '/ via J /%)
are known at the beginning of a time-step. The midpoint
method solves Eq. (18) to second order in 4r by making a
first-order half-step from +° to v*/?

b4

u"’2=u°+ﬂ2 (E'2 4+ 0 x BY?).
2 m

{19a)
If a suitable estimate of £'? is made, then Eqgs. (17), (18),
and (19a) may be included in a single pass through the
particle data arrays. The question is, how to obtain a
suitable estimate of E'/2?

First, a brief note on second-order solutions. Equa-
tion (2} may be written in the form o' = au + b, where ' =
dufdt, and u(1), a(r), and b(r} are functions of time. If (0) is
known then u(#) may be approximated to second order in
h by employing a “time-centred” derivative as follows:

u(k) = 1(0) + hat' (4/2)

d b
=ul0)+h - [u(O) +3u (0)]

2

=u(0)+ mu'(0) + % u"(0) + error(h*).

Thus u(#/2) need only be approximated to first order in 4/2
to give a second-order approximation for u(#) in the expres-
sion above. It is now shown that the gradient «'(*) at mixed
time-levels (defined below) may be used to give a first-order
accurate approximation for u{#/2) when a(#/2) and b{h/2)
are expanded to first order. First

w(xy=a(h/2) u(0) + b(K{2)

= [a(()) + g a’(O)] u(0) + b(0) + g b'(0)
= a(0) 1(0) + h(0) +g [2'(0) u(0) + 5'(0)]

= '(0)+h
= 28
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where ¢ =¢'(0) #(0) + b'(0}, and then

u(h/2)=u(0) + 2_ (%}

=u(0) + g #'(0) + error(h?)

This expression for u(h/2) gives second-order accuracy for
u(h)in

u(h) = (0)+h;[u(0)+gu’(*):’.

Returning to the question of a suitable estimate for E'/2, it
is clear that a straightforward answer is a “pre-push” of the
particles to obtain v'/? and hence J |, This solution requires
two passes through the particle tables, the first of which
(the “pre-push™) employs a mixed time-ievel electric field

E*=E(p)? J° B T,)in the equation
At ”
o=+ S L Er 0k gy, (19b)
2 m

This equation is first-order accurate in Ar, as may be shown
by consideration of the note on second-order solutions
discussed above.

Two passes through the particle data arrays may be used
to soelve Eq. (18). However, the objective of a single pass
requires a different approach:

Advance the ionic curvent density J° a half time-step to
J ) with an appropriate equation of motion.

Now only one pass through the particle velocity table is
necessary to solve Eq. (18), since £'7 is computed as a func-
tion of J 2. This is called a moment method, which almost
halves the computing time because of the small number of
grid points involved in the computation of J;”* compared to
the number of particles involved in a “pre-push” (typically
30 times more particles than grid points).

Since the ionic current density J, is advanced, this method
is termed the “current advance method™ (CAM). Of course
J;1s simply one kind of moment of the distribution function;
another is the fluid velocity, which may also be advanced a
half-step to obtain an estimate of J). However, the
advantage of the current advance method is that it
is straightforwardly applied to a muiti-species plasma,
whereas the fluid velocity approach would require treating
each species separately. In addition, the advective and
heat-flow terms are treated in a simpie manner in CAM, as
will be shown in the rest of Section 3.

3.2. “Free-Srreaming” Currents

Current and charge densities are defined analytically by
taking moments of the distribution function f(x,¢). In
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simulations they are determined at grid points by com-
puting weighted sums over the particles. A weighting
function ¢,; = ¢(x,, x;) associates a particle position x, with
a grid point x; [2], where ¢, =¢,,and 3, ¢, =1 (i, each
particle has unit weight). Tonic charge and current density
are coilected at grid points as

=244, (20}

J:‘(xj):z ¢jsqsv,v' (21)

It has been assumed that all quantities are specified at a
given time. Now consider J; evaluated in Eq. (21) with the
particle variables given at different times: velocities at the
beginning of the time-step v?, and positions at its midpoint

x!”2. This is equivalent to neglectmg the acceleration and
only taking into account the transport of charge due to
freely streaming particles, since the velocity of each particle
has remained constant during the time interval A¢/2,
whereas the particle position has changed. Applied to
Eq. (20}, the “[ree-streaming” charge density referred to by
Friedman eral. [3] is obtained. Applying it to Eq.(21)
yields the “free-streaming”™ ionic current density

JH(x12 00

i

Z $lx (22)

where the grid position x; has been omitted in the notation,
but the dependence of J, on the particle positions and
velocities has been emphasised. Note that in J*{x!2, v9), x;
and v, refer to all the particles.

3.3, Advancing the Ionic Current Density

An equation of motion is now derived for advancing J; to
the midpoint of the time-step. Consider ions at a grid point
J (ie, in a small neighbourhood of x;). Multiply the
“pre-push” equation (19b) by g, (which may in general be
different for each particle), and sum the contributions of
the terms at the grid point, using weights ¢.7 = g(x)? x))
evaluated at particle positions x> = x {1, + Ar/2).

2o a0 =3 1fzq;v;+ Zci’”z

5 ¥

(E* + 19 x BY?)

A
J}’2=J,-*+—[(AE*+F>< B'?) (23)
A= Z¢1/2_ {24a)
¢
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Equation (23) is the equation of motion for the current
advance method, giving the first-order time-advance of the
ionic current density over a step A1/2.

Thus an approximation to J* may be obtained by first
collecting the “free-streaming” current J*(x!*, v®), A and I’
during the loop that advances the particles, and then
applying Eq. (23). This method does not require treatment
of the advective and the heat-flow tensor terms found in the
usual MHD formulation of the fluid equation of motion.
Numerical difficulties in treating the advective term and the
need to collect tensor components at each grid point (and
for each species) are complications which CAM avoids.

The principal advantages of CAM are

(1) computing time is almost halved compared with a
method requiring a particle “pre-push” to evaluate J 2

(2) multiple species may be modelled easily compared
with a fluid velocity moment method in which each species
would have to be treated separately

(3) complications of treating the advective term and
heat flow tensor arc avoided, since the “free-streaming”
ionic current density, computed as a function of particle
positions a half time-step ahead of the particie velocities,
includes the contributions of advection and heat flow
to J17

4. CYCLIC LEAPFROG AND TIME-STEP ESTIMATION

4.1. Cyclic Leapfrog Applied to Magnetic Field Sub-stepping

Magnetic field evolution is determined by Eq. (3), for
which any one of a variety of numerical methods may be
compatible with CAM. Cyclic leapfrog is an application of
the modified midpoint method [ 7] to the magnetic field.

Two copies of the magnetic field are leapfrogged over
each other and periodically averaged in a cycle of arbitrary
length. In many situations the magnetic field requires a
smaller time-step than the particles to resolve its evolution
{see [9]), in particular the effect of dispersion. Cyclic
leapfrog enables it to be sub-stepped through a cycle of
smaller time-steps for each particle step. The electric field is
evaluated as a function of the time-centred charge and
current densities

Ep = E(\Q(I-I‘z! J}"’za Bp7 Te)

and B, = B(1,) is advanced from 1, to t,+ Hina cycle of n
substeps of size h = H/n, so that

BpEB(r0+ph)

as
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Bl =B0—thEO
Bz=Bof2thEl
B,,,=B, (—2hVxE,
where p=1,2, .., n—1,
B,=B, ,-2hVxE _,
BJT=BH71_hVXEr:
and, finally,
B(r,+ H)=1(B,+ BY) (25)

Computationally, this uses two copies of B, one for the
“odd” solution (p odd, together with B*) and one for the
“even” solution (p even), which leapfrog over each other.
After n steps as described in (25), the two solutions may
either be averaged, or the cycle may be prolonged, starting
with B, =B¥ —hV x E(B}). This may be prescribed by
the algorithm, or alternatively the error between the two
solutions B¥ and B, may be used as a criterion for averaging
them and starting a new cycle, possibly with a different
time-step.

4.2, Time-step Estimation

The time-step for both particles and magnetic field may
be prescribed and kept constant for the duration of a
simulation. On the other hand, a variable time-step may be
estimated periodically or in the function of some criterion
such as the error between two solutions in cyclic leapfrog
B-advance. If a new time-step is chosen, then the particle
positions and velocities must be synchronized.

The time-dependent differential equations are resolved if
the time-step is some fraction of the inverse characteristic
angular frequencies of the system. For Eqgs. (1), (2), and (16)
these frequencies are

W, ~ kv, wg~q,Bim,,

wp~q.Efmp,  op~kBjue..
Here w, is a “linear” frequency characterized by a velocity
v {which may be the maximal particle speed or the maximal
fluid speed) and a maximal wave-number k=n/4x in a
computing grid in which 4x is the cell size, wg is the ion
gyrofrequency (also denoted by £2,), w is related to electric
field acceleration, and w, is the frequency of the dispersive
effect in the magnetic field.

The dispersion frequency is usually higher than the other
frequencies, especiailly at low densities, and it is this
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high-frequency dispersion in the magnetic field which often
requires that sub-stepping be employed.

5. NUMERICAL IMPLEMENTATION

5.1. Normalisation and Units

In simulations, given a multi-species plasma with unit
mass density g,,,, Units are specified in terms of a reference
plasma of protons of mass m, and charge e, which has the
same mass density @,, as the multi-species plasma. In
this reference plasma, the proton number density #n,=
@mo/m,. Dimensioniess simulation values are related to
physical values by 5= x/u, where s is a simulation variable,
x is the corresponding physical variable, and « is a physical
unit value. Units are: mass density @,,, (thus unit
mass = g,,o x (unit length)?), magnetic field B, (which is an
arbitrary vaiue of a background field), Alfvén speed v, (unit
of speed), ion inertial length c/w,;= v ,/€; (unit of length),
cyclotron time Q' (unit of time), charge density nye {thus
unit charge = mye x (unit length)?), electric field v By, and
unit of energy = Q,,,O(c/co;,,-)3 v2. In the above definitions, ¢ is
the speed of light, the gyrofrequency Q,=¢eB,/m,, and the
ion plasma frequency w?, = nge’/egm,. Note that in terms of
these units the proton charge-to-mass ratio is unity. [n
simulations the magnetic permeability, ionic and electronic
betas, and sound speed respectively have values
ﬁezzre! sz(ﬁi+ﬂe)/29

Ho= 1! ﬁs':gi;t{vfh)n

where 1, =«xT,/e is a measure of the electron temperature,
80P, =¢.T..

5.2. Spatial Discretisation in 2D

Spatial derivatives are approximated by finite-differences
in a rectangular grid. The simulation is restricted to a
rectangular plane which is divided into rectangular celis of
size (Ax, 4y). The fields are specified at the nodes of two
interlaced grids:

nodes at cell vertices
at which B, o, J;, and p,

e Full-integer grid with
(nedx,n, 4y)n, . =1,2,., N
are specified

X, ¥

« Half-integer grid with nodes at cell cenires ((n .+ 1) dx,
(n,+ 3} 4y)), including a row of boundary cells just outside
the simulation plane, at which E is specified.

The electric field is on an interlaced grid because its curl is
used to evaluate dB8/d¢, whereas p, is on the same grid as B
because Vp, is a term in the equation for £ (Eq. (15)). The
moments g, and J; could, in principle, be specified on either
grid, and here they are placed on the same grid as B because
the J; x B/g, term may be computed on the full-integer grid
and then interpolated onto the E-grid. This interpolation
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serves the useful purpose of smoothing F a little. Another
advantage of g, and J; on the same grid as B is that they may
be treated by the same routines in graphical and numerical
diagnostics of results.

The spatial derivative é/0x is approximated at a grid
point by bilinear finite-differences on adjacent nodes on
the interlaced grid. For example, at x=(i+3) dx, y=
(j+1) 4y,

oy

1
E(“’%’”%):_‘ LG+ 1, j+ 1) =yl j+ 1)

24x
+yli+ 1, =y, )l

5.3. Gridding and Interpolation -

Gridding (assigning values to fields at grid points by
weighted sums over particles) has been discussed in
Section 3.2 for the case of collection of moments at grid
points x;. In simulations, the electric and magnetic ficlds are
specified at grid points on different grids and interpolated at
particle positions x, as

E(x) =Y ¢(x,, xF) E(xf)

B(x) =Y #(x,, x7) B(x/),

where x* and x/ are positions of grid points in the E-grid
(half-integer) and the B-grid (full-integer), respectively, and
where ¢{x_, x;} has been defined in Section 3.2.

Bilinear weighting is used for both gridding and inter-
polation. Given the normalised position {x, y)e [0, 1] %
[0, 1] in a grid cell, the bilinear weights at cell vertices are

$(0,0)=(1—-x}1-y)
$(1,0)=x(1-y)

¢l y=xy

B0, 1)=(1—x) y.

1t is important to note that in simulations the “particles” are
rot ions, but macroparticles, each representing a very large
number of ions. Therefore the distribution function is
effectively discretised into a finite number (N) of ion clouds
with centres x_, wheres=1, 2, ..., N.

Bilinear weighting is equivalent to “binning” the ions in a
macropatticle into cells enclosing grid points, where the
macroparticie position is the centre of an ion cloud with the
dimensions of a grid cell. The discretisation of phase space
introduces noise into the moment arrays. A consequence is
that there is always a noise level in the density and currents
acting as a source of small perturbations. Therefore
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- “Infinitesimal” disturbances cannot be simulated unless the
number of particles is very great.

Smoothing of the moments may be used to damp the
statistical noise. It also helps to stabilise the code against the
influence of perturbations at the shortest wavelengths. Here
a three-point smoothing stencil is apphied in x and y, that is
equivalent to

W (D amoothea = 3 (i — 1) + L) + Sye(i + 1),

5.4. Calculation of the Electric Field

Following the notation of Section 5.3, let

Gy =50600,0) + (1, 0) + (0, D+ (1, 1)

denote the cell-centred average of the field r, where gb(xf)
is sampled on the full-integer grid. Then Eq. (15) gives

o x<B
{e.

(Vx B)x (B)_ Vp,
to Q> o>

It is evident that the (V x B) x B/ug0, term renders the elec-
tric field very large at low densities relative to the back-
ground density g, which could make the code unstable. At
low densities the dispersion frequency becomes too high for
the (global) time-step to satisfy the Courant condition.
Furthermore, the hybrid model by itself is not adapted to
vacuums, since the displacement current is neglected (elec-
tric signals cannot propagate in free space) and the electric
field is proportional to ¢! (since E is derived from a
balance of forces on the electron fluid; where there is no
electron fluid, £ is undefined). As a precautionary measure
in situations when low relative densities may occur, a large
number of magnetic field sub-steps are used and the electric
field is set to zero in regions where the density is zero or
betow a minimum threshold.

E=

5.5, Initialisation and Boundary Conditions

Initial conditions are specified by giving B, ¢3,, and u, (for
each species s) as functions of x and y sampled at grid points
x; and also #, and B, from which »}, and 7, are obtained.
The composition of a multi-species plasma is determined by
the species charge-to-mass ratios r,=g¢,/m,. A drifting
Maxwellian is generated for each species with u, and v3,,
and particles are distributed randomly in the grid cells. The
number of particles per grid cell (ng, for species s} is one of
the most important numerical parameters in the simulation,
since it determines the resolution of phase space and largely
governs the computer memory and time required for the
simulation. The mass of a macroparticle is then m,=
¢, Ax Ay/ng,. and its charge is ¢, =r,m,.

In the simulations presented here, periodic boundary
conditions are applied to E in boundary cells, but not to B
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since it 1s obtained from £. Moments at opposite boundary
points are added together, and particles crossing a bound-
ary re-enter on the opposite side of the simulation plane.

5.6. Time-Advance Algorithm

In general, given x', ¢° B% 0%, o}, J%, A, I and J}' =

;
J*(x'2 8% (with T,=const), each step from ¢, to f, is
made in a sequence

1. advance B° to B', J to J!/* and evaluate E'*

e _po_ [ o 0
B =R Vx E(g, J!, B(1), T,) dt

¢

E*=E(@",J% B T,)
1/2 At 172
J=T S (AE* +I'% B

E'=E(p"?, J2 B2 T,)
2(a). advance ¢° to v’, x'” to x*2

v1/2=90+ﬂ1{E1"2+u0x8”2}
2 m

4

Ul=U0+AI__(EIIZ+UIIZXBI/2)
m

X =x'24 Ap!

2(b). collect moments in the same loop through the particles

0. = (x¥)

I =THER
J=TXx, el
A=A o)
= (x¥? ')

3. ¢! and J! are obtained as averages, and B is advanced
to B!

o1 =30+
J=ATT )

At
B =Bw—j Vx E(p!, J!, B(1), T,) dt

Az

B is integrated in time by cyclic leapfrog (Eqs. (25)). The
procedure is illustrated in Fig. 1.

At the beginning of a simulation, x, », and B are known
at time t,, and at the end, a data set with synchronous
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FIG. 1, Schematic diagram of the time advance scheme in CAM-CL.
At the beginning of the step, x has been advanced to time level ! with »°.
Moments already collected are g, the “free-streaming” iomic current
density J*(x', ¢°), as well as 9% and J!. Two solutions of B are advanced
by sub-steps {cyelic leapfrog) to time tevel §, with E(g%, J9, B, T,). The
current advance method advances J* to J|?, with the fields B'? and
E{(p¥?, J%, BV2 T,). The time-centred (for v} electric field is now evaivated
at time level §: E'?=F{p}? J12 B'2 T,). The particles are pushed:
2 and moments collected: g.(x*?) from which p! is
obtained as an average of g!” and p}?, and the backward and forward
“freg-streaming” currents J* ~(x'? »') and J**(x¥% u"), which are
averaged to yield J!. Finally 8'? ~ B'.

P! ko x

quantities is desirable. Therefore a first and last step are
NECessary:

first step—given x°, v°, and B,

2 =04x°)
FE=7,(x° 9
At
/2 _ .0 o
X =x"+—=0v
2
0% =g (x'7}
JF=TXx12 0%
A=A(x17? %

I=r(x'" %)
final step—retreat x a half-step, collect ¢! and «],

At

— =

2
€= 0m(x")

uj=u(x',v')

1 3/2

xl=x !
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The computation of the above sequences may be optimised.
Moment collection, for instance, only requires the collection
of species number density n, =3, ¢;; and “velocity density”
(nu},=3%,;¢,v;, where i= 1, N_is the particle index running
through the particles of species s. The multiplication by the
factors ¢, m,, and g>/m, may be performed after a loop
through the particles of each species:

2(b}(i). collect species partial moments n, and (nu)_,
n? =%, ¢(x}")
() =3 $(x77%) v,
(ma) 7 =3 $lx?) v,
2(b)(ii}. post-multiply and sum over species,
=Y qn"”
JiE= Z q,(mu)F
T
r=% f: (nu)

The price of this saving of time is that extra arrays are
required to store the partial moments #, and (nu),.

6. TESTS

A hybrid code should be able to model wave propagation
and wave-particle interaction with reasonable accuracy and
energy conservation. The tests which follow should give
assurance that CAM-CL meets these criteria. All the simula-
tions that follow were run on a VAX compuler, so the
dimensions of arrays were limited by the available memory.
Boundary conditions were periodic. In all simulations four
sub-steps of the magnetic field were made per particle step,
the error between magnetic field solutions was calculated
every five particle steps and was averaged if the error
exceeded 1074 A constant particle time-step was chosen for
each simulation. Simulation variables are used throughout
this section. Units are defined in Section 5.1.

6.1. Single Particle

It is instructive to begin by considering energy conserva-
tion for a single particle in a uniform magnetic field. The
particle energy remains constant. Standard leapfrog is a
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FIG. 2. Trajectories of single particles in the plane normal to a
uniform magnetic field. Straight lines join positions computed with a
leapfrog scheme over a time r= 102} with various time-steps At: (a) 1,
{b)0.75, (¢) 0.5, (d) 0.25, Initial speed v, =1v,,.

second-order method for simulating the particle motion and
introduces an error in the form of a gain in energy according
to

En = EO(] + 94 A{4/4}n>

where E, is the kinetic energy after » steps, Q2 is the gyro-
frequency, 41 is the time-step, and the velocity is assumed to
be perpendicular to B. Given £ =1 and 41 = 0.1, the energy
gain at ¢ = 100 is 2.5%, and at r =300 1t is 7.8 % . This sets
a minimum level of energy conservation in a uniform
plasma.

Figure 2 shows the trajectory of a single particle in a
magnetic field 8 = (0, 0, 1) with initial velocity v, = (0, 1, 0).
The particle gyrates for a time ¢ = 10 with time steps 4¢: 1,
0.75, 0.5, and 0.25, The largest step obeys the Courant—
Lewy—Friedrichs condition for stability, but it is completely
inaccurate. At 4¢=0.25 the trajectory is better resolved, but
the energy is not well conserved, for at 1 =100 the energy
increase is almost 50%, whereas as the same time with
Ar=0.1, it 15 2.5%, and for 4:r=005 it is 0.3%. An
isotropic distribution of particles resuits in an energy gain

ZQ"AZ")"
3 4

E,,=E0(1+—

since v, is constant.
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6.2. Quiet Plasma

A “quiet” or uniform plasma is a useful test that there are
no obvious problems with the code such as programming
bugs and algorithmic errors which render the plasma
unstable or cause it to change in an unphysical way: a quiet
plasma should remain quiet and unchanged, apart from a
low level of turbulence due to statistical fluctuations in the
particle distribution. If nothing at all happens that could
also indicate a problem. This test is a useful way of setting
bounds on values for numerical parameters such as the
number of particles per cell, cell-size, and time-step, before
setting up a simulation,

In conjunction with 2D tests, a series of 1D tests were run
to investigate the influence of numerical parameters on
energy conscrvation. One-dimensional simulations are
much faster to run than their two-dimensional counterparts,
and whereas it is recognised that 1D results do not
necessarily hold in higher dimensions, they do give
considerable insight and guidance in initialising more
time-consuming 2D runs.

More than thirty 1D quiet plasma tests were run in which
the following parameters were varied: number of particles
per cell ng, cell size dx, time step 4r, number of cells nex,
particle energy or thermal speed governed by f,, uniform
magnetic field direction (0, ¢ in spherical polar coor-
dinates), and smoothing of the electric field.

Results were compared with those of a reference case
with rather bad energy conservation, with parameters
nex =16, Ax=035, ng=16, 4t=0.1, §,=1, B.=0, B=
By(0=¢=45°). §, was chosen for approximate equiparti-
tion between the particles and the magnetic field, and
T.=0, s0 as to eliminate the non-adiabatic influence of the
electrons, which may act as a source or sink of heat. The
magnetic field direction was chosen to have a component in
each dimension. Particle, magnetic, and total energies were
recorded at =100 (the time-scale within which many
simulations are run) and ¢=300 (primarily to test for
long-term stability).

Now it is to be expected that energy is not conserved;
after all, a simulation is essentially a polynomial (or rational
function) extrapolation which by its nature diverges as ¢
becomes large. What is important is that energy is
conserved within reasonable limits within the time-scale
of interest, that is to say that the energy increase is small
compared with the total energy and small compared to the
energy exchange within the system, e.g., between waves and
particles in an ion-beam simulation,

The reference case had energy increases at 1 = 100 of 9%
(total), 14% (particles), and 2% (magnetic field) and at
t=1300, 47% (total), 77% (particles), and 4% (magnetic
field). The bulk of the energy gain was in the particles, and
this was the pattern in all the tests: the particles were being
heated, but the magnetic field remained stable and relatively
constant well beyond ¢ = 100.
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The following principal conclusions were drawn from the
tests:

(1) Energy conservation improves most strongly with
increased number of macroparticles per grid cell (ng).
Varying only ng from the reference case resulted in total
energy gains at ¢ =300 of 180% (ng=28), 47% (ng = 16),
17% (ng =20), and 14% (ng =32). At r =100, 1o01al energy
gain was 4 % for ng = 32, which is within acceptabie bounds
for a simulation.

(2) Cell-size (4x) influences energy gain. Varying dx
from the reference case resulted in energy gains at £ = 300 of
7% (dx =025, nex =16), 47% (dx=0.35, ncx=16), 21%
(dx=1, ncx=8), and 10% (Ax=2, ncx=28). Energy
conservation is best for small dx (<0.5), since spatial
resolution is better, and for large dx (= 1), since smali-scale
spatial fuctuations are suppressed. Small cell-size is
preferable, since large ceil-size also suppresses physical
phenomena, notably dispersive waves in the magnetic field.
An example of this is illustrated in Section 6.4.

{3} Time-step (Ar) had the least influence on energy
conservation, provided that the time-scales of interest were
well resolved. Halving At from 0.1 (reference case, total
energy gain 47 %, t =300) to At = 0.05 resulted in a reduc-
tion of total energy gain to 36 %. The fact that reducing A¢
does not iead energy gain to approach the minimum level
for standard leapfrog in a strictly uniform magnetic ficld,
suggests that it is fluctuations in the field quantities which
are responsibie for further non-conservation,

Further conclusions were:

{4) Smoothing of the electric field (implemented by
Winske and Quest [13]) improved total energy conserva-
tion markedly to 3.5% at r=100 (9% for the reference
case) but only 22% at t =300 (47 % for the reference case).
This suggests that, whereas in the short-term smoothing £
yields good energy conservation, in the longer term it is not
sufficient by itselfl to maintain it. It has the disadvantage that
small-wavelength physical structures may be damped.

(5) The angle of the magnetic field influences encrgy
conservation; it is not isotropic. In 1D, the x-component is
constant, and when it was set initially to zero, total
energy gain varied between 3% and 6% at =300 (47 %
for the reference case). Other results were: 4% for
B=(1,0,0), 12% for B=(1//2,1/,/2,0), and 14% for
B=(1/\/5, 0, l/ﬁ). Tt may be seen from the equations
governing the magnetic field that the choice of initial orien-
tation affects the way in which magnetic field fluctuations
are excited and coupled, which in turn affects the spurious
heating of particles.

(6) Small ion speeds improve energy conservation. This
i not surprising, since fluctuations in the velocity field and,
hence, the magnetic field are low as a consequence.
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These tD tests show that energy conservation is a com-
plicated function of a number of vartables, depending both
on easily analysed errors in standard leapfrog and on less
discernible influences of statistical fluctuations arising from
the finite number of macroparticles per grid cell. In general,
CAM-CL is most reliable and conserves energy best if the
number of particles per grid cell is maximised, given that
temporal and spatial scales are well-resolved (ie., 4r and Ax
should be substantially less than the thresholds of resolu-
tion, although reducing them further does not propor-
tionally improve energy conservation). Recommended
values are ng =30, 4+r<0.1, and Ax<0.5 These tests
illustrate that pilot 1D runs of planned 2D simulations
give considerable insight into optimising parameters and
should be used as an integral tool in simulations in higher
dimensions,

A two-dimensional quiet plasma simulation was run with
the following parameters: a grid of 64 x 64 cells of size 4x =
Ay=10.5, 32 wparticles per cell, f,=1, f,=0, B=
By(8 = ¢ =45"), and time step 4t =0.1. At r=100, cnergy
gain was 2.6% {total}, 3.8% (particles) and 0.7%
{magnetic field). At =300 it was 14 % (total), 23 % (par-
ticles) and 1% (magnetic field). Halving cell-size made very
little difference (total energy gain of 15% at r=300),
whereas decreasing number of particles per ceil to 20 had a
sub,tantial effect (total energy gain 26 % at + = 300).

These 2D tests underline the conclusions drawn from the
1D tests that energy conservation depends most strongly on
number of particles per grid cell. Furthermore, it must be
emphasized that although simulations with energy gains of
10% and more at ¢ = 300 have limited physical validity. the
tests demonstrate the important property that CAM-CL is
stable up to times of at least r=3002".

6.3. MHD Wave Propagation

The propagation of fast, slow and Alfvén waves in the
non-dispersive limit is a feature of magnetohydrodynamics
that a hybrid code should be capable of modelling. Figure 3
shows MHD wave velocities for two different values of §, 0.5
in Fig. 3a, and 4 in Fig. 3b (with f equaliy divided between
electrons and protons). In each case slow, fast, and Alfvén
sinusoidal waves of wavelength A = 50c/w,, propagated
in various directions to a uniform magnetic field; their
speeds are plotted on a polar diagram and compared with
the theoretical speeds in the non-dispersive limit. The
parameters were: a grid of 100x 10 cells of size Ax=
Ay =0.5, 30 particles per cell. Propagation angles were 15°,
30°, 45°, 60°, and 75°, with a parallel Alfvén wave as well.
The simulations were run for a time r = 10 with a time step
At =10.1. The speeds were calculated using a least-squares fit
with the theoretical oscillating magnetic field component in
all cases except for the slow waves in the low-beta case
where the density was used, because the signal-to-noise
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Polar velocity plot

Polor velocity plot
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FIG. 3. Polar plots of MHD wave speeds at various angles to the
magnetic field. Triangles represent fast and slow magnetosonic waves, and
asterisks represent Alfvén waves. Panel (a)is for § =0.5and (b)isfor f = 4.

ratio in the magnetic field was too low, This is seen in
Fig. 4a for a slow wave and the corresponding situation in
the f§ = 4 case, where the noise level is lower in the magnetic
field than the density (Fig. 4b). The tests show good agree-
ment between simulations and theory in the non-dispersive
limit.

6.4. The influence of Cell-size

This test is an illustration of a numerical artefact rather
than a test of the two-dimensional code. It consists of the
evolution of a Gaussian density pulse in one dimension,
with the other parameters satisfying the differential equa-
tions for a fast MHD simple wave given by Akhiezer {1975).
In order to minimise the influence of statistical neise, the
ions were cold (with 30 macroparticles per cell), whereas

f.=0.5. A pulse of magnitude dg/g,=0.5 and width 5c/w,,

was placed in a 1D box of length 100¢/w,,, in a uniform
magnetic field (locally perturbed by the MHD pulse), Three
cases were simulated: (1) propagation at 30° to the

By ms2a1HtI0 By msda15L10
—
=
8
L=l
B, & i
By © L ~
-
-
&
o
L .
0 af{cfup,) 20 40 O g flcfuni) 2° 40
Om ms2al500 @m msdaistlo

0 2/(efwpi) 20 a 40

0w flefun) 20 b 0

FIG. 4. Mass density and B, profiles for two slow waves at =15 in
Fig.4: (a) f=05; (b) =4
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FIG. 5. B, vs x profiles of an initially Gaussian fast MHD pulse,

B,=0, 5,=0.5, with (a} #=30°, 4x=0.5, 1 =0, which evalves into (b) at
1=20, (c) 0 =60° dx=0.5, =40, {d) 0=30° Ax =1, r=20.

undisturbed magnetic field, cell size 4x =0.5, (2) propaga-
tion at 60°, Ax =0.3, (3) propagation at 30°, 4x = 1.

The effect of low spatial resolution is obvious in the plots
of B, shown in Fig. 5. Figure 5a is the initial profile at 1 =0
which evolves into Fig. 5b, resembling a whistler mode
(simulation 1). Figure 5¢ is simulation (2} at r =40, which
resembles a train of solitons. Simulation (3) (Fig. 5d) has
the same physical parameters as (1) (Fig. 5b), yet it resem-
bles a train of solitons. It is clear that the lower spatial
resolution in simulation {3) dramatically affects the evolution
of the pulse. In particular, the length scale c/w,; is not
resolved, so that dispersive effects are suppressed. At the
lower resolution the whistler mode is unabie to develop; the
large cell size introduces a numerical viscosity which
balances the steepening of the puise and gives rise to a
soliton-like structure.

6.5. ITon Beam Instability

A low-density ion beam interacting with a background
plasma is a test of anisotropic wave—particle interaction
which utilises the multi-species capacity of CAM-CL. Here
two cases are studied for which the physical parameters
follow Winske and Quest [13]: a resonant case and a
non-resonant case,

In both cases a beam of ions of density #, and speed
v,=10v, propagated Iinitially paraliel to a uniform
magnetic field B, through a core (background) plasma of
density ».. Both core and beam have thermal speeds
(vs), . =v,. Electron temperature 7", was set to zero. The
resonant beam had a density n, =0.0151,, with core speed
v,= —0.2p,, resulting in a plasma with zero momentum in
the simulation frame. The ron-resenant beam had n, = 0.1n,
and v, = —1.1v,,.
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520100 Time histories of the variation in total, particle, and

T ; ; ; magnetic energics are plotted in Fig. 6. The exchange of

AN energy between particles and magnetic field is clearly

' ‘ illustrated, and the total energy remains constant in the

T~ —— resonant case (gain of 0.2 % at ¢t = 100) and reasonably con-

e ~._ | stant in the non-resonant case (gain of 6% at ¢=50; this

energy gain is much less than the energy exchanged between

= —  particles and the magnetic field ). One-dimensional tests dis-

N\ cussed above suggest that energy conservation in the non-

\ - T - resonant case could be improved by reducing the cell-size.

The magnetic cnergy curves compare well with those

s presented by Winske and Quest [ 13], bearing in mind the

— conclusions of 1D tests that variations of 10% in computed

| . . quantities due to numerical and algorithmic differences
fx should not be surprising.

For further comparison the y-component of the magnetic

! ‘ ! field at various times is plotted in Fig. 7. The magnitude and

i ] wavelength of the excited modes are similar to those in
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The multi-species capacity of the CAM-CL algorithm
was exploited to model the beam and core ions as separate
species with 32 particles per grid cell, but with different
macroparticle masses and charges.

A series of 1D resonant ion beam simulations were run
which showed that the results vary with cell-size Ax. The ) )
peak of the curve of magnetic energy versus time varied by 0 100 20
more than 10% about a mean in both magnitude and loca- wllefem)
tion on the time-axis. Tests of the 1D resonant beam showed Fae
that energy conservation improves with smaller cell size
(11.4% at r=50for Ax=1; 2.8% at t = 50 for 4x =0.5).

Two-dimensional results are presented which were con-
strained by computer memory to simulation grids of 256 x 4
cells for the resonant case and 128 x 4 cells for the non-reso-
nant case (i.e., the code was tested in its 2D implementation, 0 I 200 " 50
but in quasi-1D scenarios). The cell size was Ax = Ay = | z/(efwpi) /(cfwpi)
and the time-step was 4r=0.025. The magnetic field was FIG. 7. Profiles of B, vs x at various times fot ion beam simulations:
By,=(1,0,0). (a) resonant case; (b) non-resonant case.
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Winske and Quest [13]. Finally, the beam phase space ncar
the magnetic energy maximum in time is plotted in Fig. 8
(non-resonant case), showing the trapping of particles and
the isotropisation of the beam.

A more comprehensive study of ion beams is beyond the
scope of this section. Other quasi-1D tests were run, with
B.=1, which showed very little difference to the tests
presented here. The resonant case was run with 4x = 4y =2
and showed an extra local maximum on the magnetic
energy curve when compared with the corresponding
simulation in Winske and Quest [137, indicating that
CAM-CL (in its present implementation) may be most
reliable when 4x < . Further investigation of ion beams in
two dimensions at higher spatial resolution is planned.

The conclusion of this section is that the main features of
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Winske and Quest’s [13] quasi-1D simulations were suc-
cessfully modelled by CAM-CL, exploiting its multi-species
capability with acceptable energy conservation.

7. CONCLUSION

CAM-CL (current advance method and cyclic leapfrog)
is an algorithm for hybrid plasma simulations. In common
with existing methods [4,9, 14] its physical basis i1s a
“hybrid” model in which ions are treated as particles and
the electrons as a massless fluid.

Four main features distinguish CAM-CL from previous
methods. First, it is capable of treating muitiple ion species
with only one pass through the particle data tables, and this
is achieved without extrapolating the electric field forwards
in time. Advancing the particle velocities through a timestep
At (0" - v!) requires the time-centred electric field E '/
which depends on the ionic current density J? =¥ ¢quv'??,
At the beginning of a time-step, v'”* is not known, so CAM
advances the ionic current density a hall time-step
(J9—J}?). Then E'? is evaluated as a function of J}2
rather than by an extrapolation in time, and J}? is obtained
without a time-consuming “pre-push” of the particle
velocities (v° — v'/2). Hence only one pass through the
particle velocity data is required.

The second distinguishing feature is the principal dif-
ference between CAM and the moment method [14,
Appendix A]: CAM advances the ionic current density J,,
whereas the moment method advances the fluid velocity.
This difference enables CAM to easily model multiple ion
species. Another difference is presented here as the third dis-
tinguishing feature: CAM collects “free-streaming” currents
J* =3 ¢{x'*) qv° which are then advanced in time with an
cquation of motion. This avoids treatment of the advective
and ionic stress tensor terms in the moment method.

Fourth, CL is an application of the modified midpoint
method [7] to magnetic field evolution. Two solutions of
the magnetic field are ieapfrogged and periodically averaged
after cycles of arbitrary length. CL is very stable and permits
a smaller time-step for the magnetic field than for the
particles, which is useful for resolving magnetic dispersion
{prevalent in non-linear domains such as shocks) without
pushing the particies too often.

CAM-CL is presented here as an algorithm applicable to
hybrid simulations in one or more dimensions, rather than
as an optimised code. Numerous improvements in the 2D
code (H2ZCAM) used in the tests of CAM-CL. are feasible;
no claim is made that the current implementation is
optimal. A variety of powerful techniques such as multi-
gridding, particle sorting techniques, and perhaps higher-
order spatial derivative evaluations could be applied, not to
mention machine-dependent improvements. Also, particles
could be advanced with a higher-order scheme. However,
the objective here is to present the original aspects of the
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algorithm, as well as tests of the method with a relatively
simpie code,

The tests provide evidence that the algorithm acceptably
models the physics; a quiet plasma remains quiet and stable,
with energy conserved 1o within 5% over 10082,, which is a
typical time-scale of interest. One-dimensional tests indicate
that statistical noise from low numbers of macroparticles is
a major factor in increasing the total energy. MHD waves
propagate at the correct speed in the non-dispersive limit.
Ton beams show instability behaviour similar to that in
Winske and Quest [13], and tests on the evolution of a fast
MHD pulse show that cell sizes above ¢/w,, can distort the
physics and should be used with care.

Problems envisaged for application of CAM-CL are: tur-
bulence in the solar wind, the evolution of large-amplitude
waves, jon beam instabilities, and collisionless shocks.
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